Visual-Interactive Preprocessing of Time Series Data
نویسندگان
چکیده
Time series data is an important data type in many different application scenarios. Consequently, there are a great variety of approaches for analyzing time series data. Within these approaches different strategies for cleaning, segmenting, representing, normalizing, comparing, and aggregating time series data can be found. When combining these operations, the time series analysis preprocessing workflow has many degrees of freedom. To define an appropriate preprocessing pipeline, the knowledge of experts coming from the application domain has to be included into the design process. Unfortunately, these experts often cannot estimate the effects of the chosen preprocessing algorithms and their parameterizations on the time series. We introduce a system for the visual-interactive exploitation of the preprocessing parameter space. In contrast to ‘black box’-driven approaches designed by computer scientists based on the requirements of domain experts, our system allows these experts to visual-interactively compose time series preprocessing pipelines by themselves. Visual support is provided to choose the right order and parameterization of the preprocessing steps. We demonstrate the usability of our approach with a case study from the digital library domain, in which time-oriented scientific research data has to be preprocessed to realize a visual search and analysis application.
منابع مشابه
Gender Representation in Interchange (Third Edition) Series: A Social Semiotics Analysis
Gender representation has long been studied in both verbal and visual modes of ELT textbooks. However, regarding the visual mode, research has mainly focused on superficial analyses of how often each gender appears in different roles rather than on how the two genders are represented. The tools proposed in Kress and van Leeuwen’s (2006) social semiotics framework, however, permit deep ana...
متن کاملFTSPlot: Fast Time Series Visualization for Large Datasets
The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection. Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these massive datasets poses a challenge to...
متن کاملDynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...
متن کاملVACCINATED - Visual analytics for characterizing a pandemic spread VAST 2010 Mini Challenge 2 award: Support for future detection
Given a set of hospital admittance and death records, the challenge was to characterize the spread of a pandemic in terms of the attack and mortality rates, spatiotemporal patterns of onset and the recovery time. We began the analysis by preprocessing the hospital admittance records using the University of Pittsburgh’s CoCo classifier [1]. CoCo is a text classification software that takes hospi...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012